
Abstract. The very weak interaction of Li2 with He
atoms has been obtained from accurate ab initio calcu-
lations and is here analyzed in terms of its anisotropic
features. Quantum scattering calculations of the rota-
tional inelastic de-excitation cross sections are carried
out using a recently proposed multichannel treatment,
the modified variable phase method, implemented by the
authors and applied here to ultralow collision energies.
General conclusions on the low efficiency of a He buffer
gas in cooling down molecular rotations in this system
are presented and analyzed.
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1 Introduction

The last few years have witnessed a very rapidly growing
interest, both experimental and theoretical, in the the
field of cold molecules [1, 2, 3, 4, 5]. Such a marked
growth has been inspired by the spectacular results
which have been achieved in the closely related area of
cold atoms where Bose–Einstein condensation (BEC) in
dilute gases of alkali atoms has been obtained. Although
molecules are a much more difficult working environ-
ment for BEC experiments, it has been clear from the
very beginning that they have much more to offer that
simply providing an extension of the sort of experiments

already performed with atoms. Cold and ultracold
molecules have therefore attracted the interest of both
the chemical and the physical communities in trying to
better understand the large variety of additional effects
that are likely to take place at very low temperatures.
There are currently three experimental methods which
are employed to produce cold molecules that can be
trapped for a time long enough to be further manipu-
lated. One of the most widely used approaches starts
with cold atoms stored in a magneto-optical trap and,
through the process of photoassociation, binds two
atoms together [6,7]. The ensuing molecules are transl-
ationally as cold as the atoms from which they are
produced but, since the latter get together at rather large
internuclear distances, the most favored states of the
molecules formed are often high vibrational states just
below their dissociation limit. Using a variety of laser
schemes, the internal energy distributions of the newly
formed molecules can be manipulated in order to
transfer them into their ro-vibrational and electronic
ground states. In the second method, a beam of dipolar
molecules is decelerated during the passage through an
array of time-varying inhomogeneous electric fields and
then trapped in an electrostatic storage ring [5] or in an
electrostatic quadrupole trap [8]. Another possibility for
cooling molecules is offered by injecting them in a cold
He buffer [9, 10] where they can then thermalize after a
series of multiple collisions. When 3He is used as a buffer
gas, the temperature can be as low as 250 mK and one
can still maintain a sufficient buffer gas density to ensure
efficient cooling by frequent collisions. It is therefore of
importance to have some previous knowledge of the
relative sizes and for the corresponding collisionally
inelastic cross sections related to a particular molecule
injected in the buffer gas to initiate the cooling step of
the process. This essentially means that to gather
theoretical information on the inelastic collisions occur-
ring at ultralow temperatures we have to have previously
acquired reliable information on the anisotropic inter-
actions which drive the collisional cooling. In the present
study we will present a new and fairly reliable descrip-
tion of the interaction of Li2 with the He atom that has
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2Department of Chemistry, Koç University, Istanbul, Turkey
3Department of Chemistry, Technical University of Istanbul, Turkey

Received: 17 July 2003 / Accepted: 18 December 2003 / Published online: 16 June 2004
� Springer-Verlag 2004

Theor Chem Acc (2004) 112: 263–269
DOI 10.1007/s00214-004-0586-z



been computed in our group and employ it to analyze
the relative efficiency of collisionally cooling rotational
states of that diatomic target.

2 The rigid rotor potential

The potential energy surface (PES) was computed in
Jacobi coordinates by fixing the internuclear distance of
the Li2 molecule at its equilibrium value of 2.7 Å. The
extension of the computations to other Li2 geometries is
currently in progress and will be analyzed elsewhere. We
believe, however, that the present computed interaction
should be accurate enough to reliably perform the
studies described later, since we do not expect any
significant modification of the Li2 bond length due to the
approaching of one He atom, a very weak perturber of
the molecule as we shall see later. Furthermore, the
quantum structures of Li2 in small 4He clusters are also
likely to affect very little its equilibrium bond length and
therefore can be realistically studied with the present
rigid rotor (RR) surface.

The ab initio calculations were done via Gaussian98
[11], using the quadratic configuration interaction
with singles, doubles and noniterative corrections due to
triples (QCISD(T)) with a correlation- consistent
polarized-valencte quadratic zeta basis set and with a
frozen lithium core. Each of the calculated points
was counterpoise-corrected to avoid the basis set
superposition errors (BSSE) that turned out to be very
large in this system. The calculations were repeated for
selected geometries with the coupled-cluster method
with singles, doubles and noniterative corrections due to
triples (CCSD(T)) with the same basis set: the results of
the QCISD(T) and the CCSD(T) are almost exactly
the same within 10�6%. Another set of selected

geometries was repeated without freezing the lithium
core. No more than 2–3% differences were detected
between computations done with or without a frozen
core.

Since the interaction between the molecule and the
atom is highly isotropic, only four orientations were
computed and for each of them 35 different R values
were obtained. The potential-energy curves corre-
sponding to the four angles are reported in Fig. 1. As
one can see, this is a very weak interaction and its
minimum geometry turns out to be linear, a feature
that we shall further discuss later in more detail. It is
worth noting at this point that the isotropic interaction
between atomic Li and He has a maximum depth of
1.5 cm�1[12] (one of the strongest among those existing
in the alkali-helium pairs). The interaction that we
obtain in the Li2–He system turns out to be smaller, by
a factor of 2, that that of the atomic case. This effect is
probably due to the presence of interaction forces
which now describe a potential between two closed-
shell systems (Li2 and He) while the atomic radical
structure produced more efficient dispersion contribu-
tions. The molecular interaction is essentially isotropic
and the minimum distance moves from 7.6 to 6.9 Å,
i.e., only about 10% when going over the whole
angular range. The fact that the anisotropy of this
interaction is very small is further confirmed when one
looks at the usual multipolar expansion coefficients
Vk ¼ 2kþ1

2

R 1
�1 V ðR; hÞPkðcos hÞd cos h that we found to

numerically converge rapidly and to require a relatively
small number of k values to accurately reproduce the
original points of the RR surface. As a pictorial
example, the first two terms of the Vk expansion are
reported in the inset of Fig. 1.

As far as we know, all the PESs calculated before for
the title system were either semiempirical or obtained by

Fig. 1. Computed points of the
interaction once corrected for
basis set superposition errors as a
function of R and for four dif-
ferent orientations. The inset
reports the first two expansion
term V0 and V2
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fitting preexisting but old ab initio calculations. How-
ever, we shall pursue in this section a comparison with
these earlier data in order to get a better feeling for the
overall reliability of our results. A comparison between
the repulsive part of the potential calculated by us and
the semi empirical one obtained by Rubahn [13] is
reported in Fig. 2. The agreement of the repulsive region
of the potential is actually very good. Larger differences
still exist, however, in the attractive region of the
potential. We therefore report a comparison between
three potentials in Fig. 3: the potential obtained here,
that from the fitting of Rubahn[13] and the one obtained

by Fuchs and Toennies[14] as a fitting of unpublished
Configuration Interaction calculations. The h ¼ 0� and
h ¼ 90� orientations are reported. The potentials ob-
tained by Rubahn (dashed lines) are weaker with respect
to ours for both orientations, while the minimum values
are larger than those obtained by us. This may be due to
a underestimation of the Cn coefficients used in Ref. [13]
to model the long-range part of the potentials since they
were obtained by second-order perturbation theory. The
potential of Fuchs and Toennies presents instead well
regions which are much deeper than ours and this
may be caused by the lack of a proper correction for

Fig. 2. Comparison of the repulsive part of
the potential: circles present work, solid line
from Ref. [13]. Left panel for h ¼ 0�, right
panel for h ¼ 90�

Fig. 3. Comparison of the attractive well of
the potential: circles present work, dashed line
from Ref. [13] and dot-dashed line from Ref.
[14]. Left panel for h ¼ 0�, right panel for
h ¼ 90�
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BSSE in the calculations they used as input for the
fitting. It is worth pointing out that the potential
reported by Fuchs and Toennies has been improved
by Gianturco et al. [15] to yield better vibrationally
inelastic cross sections by adjusting some of the
parameters in its analytical representation. The RR
component was not, however, modified from the ones
proposed before.

While differing substantially from previous empirical
estimates, our potential shows here a shorter range of
action and well depths that are intermediate with respect
to previous results. It is nevertheless true for all existing
PESs that they present a very weak angular anisotropy,
a feature that is indeed relevant for the discussion of the
rotational cooling collisions at ultralow energies already
reported by us later [16]. To give an idea of the global
behavior of this new PES we show a 3D view of it in
Fig. 4. In that picture one can easily notice the mainly
isotropic interaction and the well-defined molecular core
identified by the repulsive region which shows no trace
of any orientation-dependent molecular structure for
this very weak Van der Waals complex.

The RR interaction potential was fitted to an analytic
form in Jacobi coordinates for R larger than 2.5 Å. The
potential is expanded in Legendre polynomials and, as
mentioned before, it is essentially converged with the
inclusion of k ¼ 6:

VintðR; hÞ ¼
X

k¼0;2;4;6
VkðRÞPkðcos hÞ ð1Þ

where each coefficient VkðRÞ (for R < 15:0 Å) has been
fitted to the expression:

VkðRÞ ¼ ck;0
e�akR

R
þ
X9

i¼1
ck;i Re�bkR
� �i ð2Þ

For R � 15:0 Å each of the VkðRÞ has been further
analytically extended into the long-range region of
interaction by extrapolating each of them through the
usual perturbation expansion coefficients determined
from the last few computed points:

VkðRÞ ¼
C6ðkÞ

R6
þ C8ðkÞ

R8
ð3Þ

The various coefficients of Eq. (2) are reported in
Table 1.

3. Ultralow energy scattering

The de-excitation collisions that will be initially
analyzed are the inelastic collisions occurring in the
ultralow kinetic energy regime. In the entrance channel
the molecule is taken to be in a rotationally excited
state (j ¼ 0; 2; 4; and 6) and the open channels in the

Fig. 4. 3D view of the interaction
potential

266



limit of zero initial kinetic energy are all the rotational
levels with an energy less than �j. The time-indepen-
dent formulation of any close coupling (CC) approach
to quantum inelastic scattering is certainly well known
and will be not repeated here. We will simply remind
the reader of the basic form of the final CC equations
leading to the final scattering states of the system [17,
18]:

d2

dR2
þ k2 � V� l2

R2

� �

G ¼ 0 ð4Þ

where ½k2�ij ¼ dij2lðE � �iÞ is the diagonal matrix of
the asymptotic (squared) wavevectors, V ¼ 2lU is the
potential coupling matrix, ½l2�ij ¼ dijliðli þ 1Þ is the
matrix representation of the square of the orbital
angular momentum operator and G is the solution
matrix which holds the radial channel components of the
scattering wavefunction. From Eq. (4) we can extract
the scattering matrix S by using the fact that in the
asymptotic region the solution matrix can be written in
the form

WðRÞ ¼ JðRÞ �NðRÞ � K ; ð5Þ
where S ¼ ð1þ iKÞ�1 � ð1� iKÞ and where JðRÞ and
NðRÞ are matrices of Riccati–Bessel and Riccati–Neu-
mann functions. From the S matrix the inelastic cross
sections can be finally obtained [17, 18]. Two problems,
however, arise when dealing with ultralow collision
energies: the large range of integration of the CC
equations that is required and the number of steps
requested by the integrator which become very large. We
have recently published an algorithm for the solution of
the CC equation [19] that modifies the variable phase
approach in order to solve that problem addressing
specifically the latter point.

Since the collision is inelastic (the molecule undergoes
a relaxation from level j to a lower rotational level) the
elastic phase shift is a complex number and we can
define a complex scattering length as the limiting value
of djðkÞ=k when k ! 0, where k is the initial wavevector
associated with the initial kinetic energy. Expanding the
elastic element Sjj0 in powers of k we have [20]

Sjj0 ’ 1þ 2idjðkÞ ¼ 1� 2ikðaj � ibjÞ ¼ 1� 2ikaj ; ð6Þ
so knowledge of the elastic element of the S matrix when
k ! 0 allows us to calculate the real (aj) and imaginary
(bj) parts of the scattering length (aj) [21, 22]. Total
inelastic and elastic cross sections in the k ! 0 limit can
then be easily calculated and are given by

rel
j ¼ 4p aj

�
�
�
�2; rin

j ¼
4pbj

k
; ð7Þ

where the second expression is just the well-known
Wigner threshold law for inelastic collisions. The
usefulness of these expressions, originating from well-
known threshold laws [20] employed in the case of
multichannel scattering problems, can be easily under-
stood in the context of the ultra-low energy quenching
dynamics since the knowledge of the a and b quantities
directly allows us to estimate from our calculations the
collisional efficiency of such processes. The analytically
continued S matrix has a pole at a point kp located in the
complex k-plane. We can thus obtain the complex energy
value Ep of the resulting S-matrix pole, on one of the two
Riemann sheets of the two-fold complex energy plane,
by using the formula

Ep ¼
k2p
2l
¼ �

expði2 arctanðbj=ajÞÞ
2ljajj2

¼ E � i
2

C : ð8Þ

The real part of Eq. (8) gives the energy of the bound
(a > 0) or virtual (a < 0) state. Since we are dealing with
an inelastic collision because the initially excited mole-
cule may undergo ro-vibrational quenching, the energy
of the bound or virtual states has an associated width
given by =ðEpÞ ¼ C, so the state becomes metastable and
its lifetime is s ¼ 1=C [21].

4. Rotational de-excitation cross sections and scattering
lengths

Rotationally inelastic cross sections were calculated and
their ultralow energy behavior is reported in Fig. 5.
The cross sections were obtained for various collision

Table 1. Coefficients for the analytic expression of the rigid rotor potential as a function of R ˛ [2.5,¥] Å and h. Everything is in atomic
units. Numbers in parentheses are the exponents of the decimal notation

V0 V2 V4 V6

a 0.5 0.5 0.5 1.6218
b 0.5 0.5 0.5 1.0986
c0 )0.870289()1) )0.183932()1) )0.138628()1) )0.206926(+3)
c1 )0.602568()3) )0.517578()4) 0.218747()4) 0.873162()3)
c2 )0.118441()1) 0.602994()2) 0.402227()2) 0.246637(+2)
c3 0.502432 0.106773 )0.661691()1) 0.964293(+3)
c4 )0.414819(+1) 0.350547 0.148343(+1) )0.744490(+3)
c5 0.324000(+2) )0.663623(+1) )0.175986(+2) 0
c6 )0.172160(+3) 0.130335(+2) 0.975611(+2) 0
c7 0.541011(+3) 0.350719(+2) )0.292743(+3) 0
c8 )0.900533(+3) )0.158505(+3) 0.456372(+3) 0
c9 0.613186(+3) 0.180890(+3) )0.254646(+3) 0
C6 0.117870(+2) 0.216904(+1) 0.493947()1) )0.426189()5)
C8 )13557.9 )2358.83 )0.836376 0.003733
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energies starting from 10�5 up to 100 cm�1. Owing to
the small anisotropy of the interaction, the rotational
basis that we employed was rather small and included
the even-j states of the molecules up to jmax ¼ 10. We
integrated the coupled equations from 1 to 300 Å by
employing a different number of total angular momen-
tum values depending on the collision energy: the
largest collision energy required 25 total angular
momentum values to converge completely within less
than 1%.

The top-left panel of Fig. 5. shows elastic cross sec-
tions for various initial j levels of the molecule: the four
cross sections are very similar to each other and are very
large in the ultralow energy limit. The weakness of the
interaction potential makes the cross sections very
smooth and without any sign of resonances even for
energies larger than 1 cm�1 where centrifugal barriers
often induce sharp shape resonances for systems that
however exhibit stronger PES anisotropic features [16].
The only visible effect of a ‘‘resonant’’ behavior is the
large value attained by the elastic cross section at very
low energies. Indeed, this behavior is probably due to the
presence of a virtual state near threshold because the
scattering lengths associated with each initial j value
turn out to be negative. The energy of this state can be
estimated by the scattering length results to be about
)0.3 cm�1 for each of the initial j levels. Since the
interaction potential is so weak and the scattering is
determined by the presence of the virtual state we can
safely say that Li2–He has no bound states. We also
carried out further studies on the Li2ðHeÞn systems
which will be presented elsewhere, with n � 10, and we
found that all systems ‘‘classically’’ show small binding

energies but the quantum effects prevent true bound
states from appearing below n ¼ 3. This is also the rea-
son why we do not see any Feshbach resonance
appearing at higher energies although the density of
rotational states of Li2 is relatively high. In an adiabatic
picture Feshbach resonances are due to trapping of the
wavefunction in the well generated by the presence of a
closed channel whose energy is lowered locally (but not
asymptotically) by the effect of the attractive interaction.
None of the adiabatic potentials that we can obtain for
different j values support bound states since the scat-
tering length associated with the corresponding initial j
value remains negative.

The various inelastic cross sections are reported in the
further three panels of Fig. 5: for energies larger than
1 cm�1 the de-excitation cross sections are now 1 or 2
orders of magnitude smaller than the elastic ones
because of the small angular anisotropy. At even smaller
energies the cross sections start to diverge following
Wigner’s law. Given the extremely small rotational
coupling in the present complex, the de-excitation cross
section is chiefly controlled by the energy difference

Table 2. Scattering lengths, energies and zero temperature rate
coefficents

Intial j
state

aj(Å
2) bj(Å

2) Virtual state
energy (cm)1)

De-excitation
rate (cm3 s)1)

0 )7.55 0 )0.095 0
2 )7.60 0.01 )0.094 1.17()21)
4 )7.59 0.11 )0.094 8.06()21)
6 )7.53 0.16 )0.096 1.21()20)

Fig. 5. Rotationally state-to-state
elastic and inelastic cross sections
as a function of collision energy
and for different initial rotational
states
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between the rotational levels and therefore becomes
larger when the initial energy content of the molecule is
higher. On the whole, it is hard to expect that rota-
tionally excited Li2 molecules could be efficiently cooled
by a He buffer gas at the energies expected to exist in the
experiments[5].

The scattering lengths associated with each of the
scattering processes, the energy of the virtual states
detected in the present study, and the rate coefficient for
the limit of zero temperature are reported in Table 2.

5 Conclusions

We have reported a new accurate PES that realistically
describes the very weak van der Waals complex Li2–He
and its spatial region of interaction. This interaction
was employed to obtain ‘‘exact’’ cross sections for the
rotational transitions between the lowest states of the
target diatomic. Generally speaking inelastic processes
are usually weaker and inefficient with respect to elastic
collisions unless the energy is extremely low and the
Wigner regime has been reached. In this system we
detected a very small rotational quenching rate for Li2
compared with other systems with low angular anisot-
ropy like CO–He [16, 23]. The scattering calculations
discussed here allow us to obtain accurate elastic cross
sections from which the scattering length can be
obtained. Since the scattering length turns out to be
negative and because of the very weak interaction
within this complex we can conclude that the Li2–He
system does not support any bound state, at least with
the PES calculated here, while it may become bound
when interacting with more 4He atoms as can occur
‘‘inside’’ the clusters generated by helium nanodroplets
[24].
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